Functional microRNAs and target sites are created by lineage-specific transposition.

نویسندگان

  • Ryan M Spengler
  • Clayton K Oakley
  • Beverly L Davidson
چکیده

Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3' untranslated region (3' UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3' UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rolling-Circle Transposons Catalyze Genomic Innovation in a Mammalian Lineage

Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive cat...

متن کامل

Comparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools

Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...

متن کامل

Comparing MicroRNA Target Gene Predictions Related to Alzheimer's Disease Using Online Bioinformatics Tools

Introduction: The prediction of microRNAs related to target genes using bioinformatics tools saves time and costs of the experimental analyses. In the present study, the prediction of microRNA target genes relevant to Alzheimer’s Diseases (AD) were compared with the experimentally reported data using different bioinformatics tools. Method: A total of 41 microRNAs associated with 21 essential ge...

متن کامل

Construction of a recombinant bacmid DNA containing influenza A virus hemagglutinin gene using a site-specific transposition mechanism

Introduction: In recent years, influenza viruses have caused moderate to severe infections all around the world while so far there is no influenza vaccine that can protect people with only one dose of injection. In this regard, producing a universal vaccine based on virus-like-particles (VLP) could be an ideal approach.  Methods: In this study, the full-length ORF of influenza hemagglutini...

متن کامل

From 'JUNK' to just unexplored noncoding knowledge: the case of transcribed Alus.

Non-coding RNAs (ncRNAs) are increasingly being implicated in diverse functional roles. Majority of these ncRNAs have their origin in the repetitive elements of genome. Significantly, increase in genomic complexity has been correlated with increase in repetitive content of the genome. Primate-specific Alu repeats, belonging to SINE class of repeats, is the most abundant repeat class inhabiting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2014